Convex-set-based fuzzy clustering
نویسندگان
چکیده
Prototype-based methods are commonly used in cluster analysis and the results may be highly dependent on the prototype used. In this paper, we propose a two-level fuzzy clustering method that involves adaptively expanding and merging convex polytopes, where the convex polytopes are considered as a “flexible” prototype. Therefore, the dependency on the use of a specified prototype can be eliminated. Also, the proposed method makes it possible to effectively represent an arbitrarily distributed data set without a priori knowledge of the number of clusters in the data set. In the first level of our proposed method, each cluster is represented by a convex polytope which is described by its set of vertices. Specifically, nonlinear membership functions are utilized to determine whether an input pattern creates a new cluster or whether an existing cluster should be modified. In the second level, the expandable clusters that are selected by an intercluster distance measure are merged to improve clustering efficiency and to reduce the order dependency of the incoming input patterns. Several experimental results are given to show the validity of our method.
منابع مشابه
FUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE RESIDUATED LATTICES
In this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. In particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. Then we study fuzzy...
متن کاملGeneralizations of Fuzzy C-Means Algorithm to Granular Feature Spaces, based on Underlying Metrics: Issues and Related Works
This paper considers dissimilarity measures and clustering techniques for two special cases of set-defined objects: fuzzy granules and subsequence time series. To deal with clustering of such kind of objects, we propose two implementations that generalize the Fuzzy C-Means algorithm to granular feature spaces. Granular computing is a paradigm oriented towards capturing and processing meaningful...
متن کاملModified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملDensity based fuzzy c-means clustering of non-convex patterns
We propose a new technique to perform unsupervised data classification (clustering) based on density induced metric and non-smooth optimization. Our goal is to automatically recognize multidimensional clusters of non-convex shape. We present a modification of the fuzzy c-means algorithm, which uses the data induced metric, defined with the help of Delaunay triangulation. We detail computation o...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Fuzzy Systems
دوره 7 شماره
صفحات -
تاریخ انتشار 1999